
Vote 2012 Map Center Documentation
Release 1.4

Justin Myers

August 10, 2012

CONTENTS

1 Contents 3
1.1 Principles of operation . 3
1.2 Package reference . 4
1.3 Signal reference . 21
1.4 Module reference . 22
1.5 User interface . 35
1.6 Embeddable maps . 37

i

ii

Vote 2012 Map Center Documentation, Release 1.4

This documentation describes how the PBS NewsHour’s Vote 2012 Map Center is put together from a technical
perspective, primarily for people who are interested in developing new features for it.

Note: Throughout this documentation, we refer to certain file names and file paths. These paths are rela-
tive to the Map Center root directory, which is http://www.pbs.org/newshour/vote2012/map/ or the
frontend/dist directory of the Map Center’s GitHub repository.

CONTENTS 1

https://github.com/newshour/map_center

Vote 2012 Map Center Documentation, Release 1.4

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Principles of operation

The Map Center is designed to be a system for rapid (up to near-real-time) generation of browser-based vector choro-
pleth maps related to the 2012 state and federal election cycle.

1.1.1 Compatibility

The Map Center officially supports (i.e., is specifically tested on) the latest versions of Firefox, Chrome and Mobile
Safari as well as Internet Explorer 8 and later. More generally, it should be compatible with any relatively modern
browser that supports SVG, including Android 3.0; Android 2.x devices are considered partially compatible due to a
canvas fallback that does not support events on shapes on the canvas.

There is a particular emphasis on planning for touch events and supporting Mobile Safari on the iPad in particular
since an iPad 2 (using HDMI mirroring and eventually feeding into the WETA control room) is used to manipulate the
Map Center on the air.

1.1.2 Components

We use jQuery for most of our client-side heavy lifting, including handling AJAX (technically JSONP) requests, UI
events and animations. jQuery UI is used for specific widgets – primarily dialog boxes. Highcharts handles our
occasional charting needs (currently just in the Electoral College module), and Dojo gets brought in for its vector
graphics library. We use Modernizr to determine whether users are on touch-capable devices.

The core Map Center code handles the rest of the basics–drawing, coloring and clearing map areas (e.g., counties
and states), adding city labels where necessary, positioning tooltips on map areas, binding common UI behaviors and
passing execution off to a specific Map Center module.

1.1.3 Execution flow

When the DOM is ready, we load Dojo’s graphics library and prepare a surface object on the #map element. This
surface object is exposed as nhmc.surface and is the area on which all map vector graphics will be drawn.

Once that surface is ready, we initialize the rest of the Map Center core in nhmc.mapCenterInit. That function is
described more fully in its own documentation, but overall, it does the following:

• Renders the initial nationwide state map if provided.

• Binds specific map-drawing event handlers.

3

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Canvas_element
http://store.apple.com/us/product/MD098ZM/A
http://www.weta.org/
http://jquery.com/
http://en.wikipedia.org/wiki/JSONP
http://jqueryui.com/
http://www.highcharts.com/
http://dojotoolkit.org/
http://dojotoolkit.org/reference-guide/1.6/dojox/gfx.html
http://dojotoolkit.org/reference-guide/1.6/dojox/gfx.html
http://modernizr.com/
http://api.jquery.com/ready/
http://dojotoolkit.org/reference-guide/1.6/dojox/gfx.html
http://dojotoolkit.org/reference-guide/1.6/dojox/gfx.html#surface

Vote 2012 Map Center Documentation, Release 1.4

• Shows the default map view on the page, as defined in the #map_view hidden <input> element (generally
included at the bottom of the sidebar).

• Binds a few outdated UI behaviors (used in initial testing but referring to elements which are currently omitted).

• Binds general UI behaviors for the tabs that are included in most modules.

When the initial render of the map is finished, the drawingComplete signal fires (which happens any time a map
view is finished rendering), which in turn fires (this one time only) the coreInitialized signal to pass execution off
to whatever module is responsible for the page. (All modules ultimately consist of an event handler that is bound to
coreInitialized.)

1.2 Package reference

All of the core Map Center functionality is contained in “packages” (objects) underneath the global nhmc variable. All
of these packages (including the root nhmc package) are standard JavaScript objects created using a simple namespace
function included in the <head> of every Map Center page.

Packages:

1.2.1 nhmc (root)

Most of the Map Center’s functionality is contained either in its modules or in packages underneath the root nhmc
package, but a handful of important objects are contained at this level for lack of a more approprate place to put them.

Graphics objects

nhmc.surface

Object (instance of dojox.gfx.Surface)

Dojo’s graphics library requires the creation of a “surface” object, which provides a rectangular drawing area on which
vector images may be created. The nhmc.surface object always corresponds to that surface for the Map Center,
and it is kept to the size of the #map element on the page. The Dojo documentation contains more guidance on the
functionality of this type of object.

Initialization

nhmc.mapCenterInit

Function

nhmc.mapCenterInit()

This function executes as soon as nhmc.surface is loaded. It prepares the application environment for whatever module
is ultimately responsible for the page by performing the following duties:

General configuration overrides Many general configuration variables (text sizes, default fill colors, etc.) are
located in nhmc.config, but sometimes it makes sense to override them. nhmc.mapCenterInit begins by searching
for a global object named nhmc_config; if this object exists, it is merged into nhmc.config and overwrites any
identically named properties. The logic for this deep copy operation is handled by jQuery.extend.

4 Chapter 1. Contents

http://blogger.ziesemer.com/2008/05/javascript-namespace-function.html
http://blogger.ziesemer.com/2008/05/javascript-namespace-function.html
http://dojotoolkit.org/reference-guide/1.6/dojox/gfx.html#surface
http://api.jquery.com/jQuery.extend/

Vote 2012 Map Center Documentation, Release 1.4

Pre-drawing nationwide state map The nationwide state map (i.e., the U.S. map that just shows state boundaries)
is a special case of map view that, if used, must already be rendered. Because of this, nhmc.mapCenterInit
locates the path data if available, draws the states and adds labels for the especially small ones and then immediately
hides all of those objects. This leaves them ready to go in case the user or the module selects that map view later on.

Setting initial scale factors The Map Center supports scaling map views as necessary to fit the width of the #map
element that contains the actual map surface. At this point in the application, no measurements have been taken of the
size of #map, so we assume all maps to be rendered at their original size and store the corresponding scale factor of 1
for each possible map name.

Bind to map initialization signal The default map view is set with the value of the #map_view hidden <input>
element, which is typically located at the end of the sidebar markup. We kick off the actual rendering process by
calling nhmc.ctrl.zoomToState with the initial value of #map_view.

Before we do that, however, we listen for the first firing of the drawingComplete signal. When this signal fires for the
first time, we ensure that the map is scaled properly and then fire the coreInitialized signal to pass execution off to the
module responsible for the rest of the page.

Todo

There’s also an event handler bound to #map_view‘s change event that is most likely implemented incorrectly. In
practice, it almost certainly never gets used and probably can be removed, but this should be investigated first.

Bind vestigial UI events Toward the beginning of the Map Center’s development, we experimented with some UI
interactions that would allow for switching between the map view and a large chart of some sort for another view of
the information being displayed. (The chart’s exact contents would have depended on those of the map, of course.)
Because of this, nhmc.mapCenterInit still binds UI events that that were related to that interaction and a few
other testing elements we were using at that time.

Todo

Consider removing these.

Bind general tab behaviors Finally, nhmc.mapCenterInit binds UI behaviors that actually are used–namely,
those related to the tabs shown next to the page’s <h1> in most maps (currently all unless they’re embedded). There
are three main behaviors to know about:

• When a tab is selected somehow, assign it the .view_tab_active class and remove that class from all other
tabs. “Selecting” a tab in this context also includes clicking on an option in that tab’s child dropdown menu,
which is covered next.

• When a tab contains a button to show or hide a child dropdown menu, ensure that clicking that button actually
shows or hides that menu. This possibility is limited to a maximum of two tabs with specific naming conventions:

– One tab called #view_tab_more, with a toggle button called #view_tab_more_toggle and a
child dropdown menu called #view_tab_more_menu, which is most often used for selecting a specific
map view. (It’s also used in the Electoral College calculator for selecting a previous election’s results to
display.)

– One tab called #view_tab_options_more, with a toggle button called
#view_tab_options_more_toggle and a child dropdown menu called
#view_tab_options_more_menu, which is most often used for selecting a more specific
data set (for example, a specific ethnic group in a map of ethnic breakdowns).

1.2. Package reference 5

Vote 2012 Map Center Documentation, Release 1.4

Event handlers for the options within tabs’ dropdown menus are delegated, so it is possible to add and remove
these options after the Map Center core has been initialized. This is done for non-primary election results to
show a list of races to choose from, for example.

• For tabs that contain child dropdown menus, ensure that clicking on the name of the tab toggles the dropdown
menu instead of selecting the tab. This was changed after usability testing within the NewsHour (both on
mobile and on desktop devices) showed that this was the expected behavior. This is overridden, however, on the
Electoral College calculator, where tabs also exist without dropdown menus.

Orphans (unused components which should be removed)

nhmc.R

null

Originally used as a reference to the Raphael graphics library; unused since switching to Dojo in September 2011.
Currently set to null.

Todo

Remove this.

1.2.2 nhmc.charts

This package just contains placeholder objects to be used with the Highcharts charting library. Various charts in the
Map Center can use these names for consistency with other modules. Each of these objects should be either null or
an instance of Highcharts.Chart, which is further documented on the Highcharts site.

Chart objects

nhmc.charts.mainChart

Object (instance of Highcharts.Chart) or null

The nhmc.charts.mainChart object is not currently used. It used to be in place to support an alter-
native chart view that could be shown instead of a map in particular cases (see a longer explanation with
nhmc.mapCenterInit), but this isn’t currently done.

nhmc.charts.lowerChart

Object (instance of Highcharts.Chart) or null

The nhmc.charts.lowerChart object is used for supplemental charts that don’t need to be as large as the map
itself. Right now this is used in one place: at the bottom of the sidebar in the Electoral College calculator to show
how many electoral votes each candidate has in a given scenario.

1.2.3 nhmc.cleanup

This package contains a variety of utility functions that remove application elements when they’re no longer needed.
It also contains a few objects that store references to these elements so that the cleanup functions know what they’re
looking for.

6 Chapter 1. Contents

http://api.jquery.com/delegate/
http://raphaeljs.com/
http://dojotoolkit.org/
http://www.highcharts.com/
http://www.highcharts.com/ref/#chart-object

Vote 2012 Map Center Documentation, Release 1.4

General-purpose garbage

nhmc.cleanup.futureGarbage

Array

This is a standard JavaScript array that holds jQuery objects that might need removal later. It’s meant for use with the
convenience function nhmc.cleanup.clearGarbage, which just calls .remove() on all elements of this array.

nhmc.cleanup.clearGarbage

Function

nhmc.cleanup.clearGarbage()

This calls .remove() on all elements of nhmc.cleanup.futureGarbage, which should be jQuery objects referring to
elements on the page.

Map graphics

nhmc.cleanup.clearPathColors

Function

nhmc.cleanup.clearPathColors()

This function simply clears the color of every state and county path drawn on the map; more specifically, it sets the fill
color of each of those paths to nhmc.config.defaultAttributes.fill.

Dialog boxes

nhmc.cleanup.activeDialogs

Array

Sometimes the Map Center interface makes use of jQuery UI dialog boxes to request or present additional information;
for example, the Electoral College calculator uses them to allow users to split certain states’ electoral votes where that
is possible.

nhmc.cleanup.activeDialogs is a standard JavaScript array that stores jQuery objects referring to these dia-
log boxes for easy reference later–primarily by nhmc.cleanup.closeDialogs.

nhmc.cleanup.closeDialogs

Function

nhmc.cleanup.closeDialogs()

This function just closes any dialogs stored in nhmc.cleanup.activeDialogs by calling .dialog("close") on each
object therein.

1.2. Package reference 7

http://jqueryui.com/demos/dialog/

Vote 2012 Map Center Documentation, Release 1.4

Event handlers

nhmc.cleanup.clickHandlerTokens

Array

This is a standard JavaScript array that contains zero or more handles returned by dojo.connect. Dojo’s event handling
for graphics objects (and other items in general, but we only use it for graphics objects) is powerful in that it doesn’t
require DOM elements to exist as in jQuery–but it introduces a bit more complexity in that binding an event handler
returns a handle that must be passed later to dojo.disconnect in order to unbind that handler.

This array specifically is meant to hold handles related to event handlers for click events on map areas. An example of
its use from the Electoral College calculator:

var eventToken = nhmc.geo.usGeo[’Nebraska’].statePath.connect(
’onclick’, nhmc.geo.usGeo[’Nebraska’].statePath, nebraskaHandler

);
nhmc.cleanup.clickHandlerTokens.push(eventToken);

This is done to make it easier to unbind all such handlers at once when needed by using
nhmc.cleanup.clearClickHandlers, described below.

nhmc.cleanup.clearClickHandlers

Function

nhmc.cleanup.clearClickHandlers()

This function simply goes through all handles stored in nhmc.cleanup.clickHandlerTokens and passes them to
dojo.disconnect. It’s a handy way to unbind all click handlers at the same time when needed.

Charts

nhmc.cleanup.clearCharts

Function

nhmc.cleanup.clearCharts()

This function checks for the existence of the chart objects described in nhmc.charts; if any of those objects are found,
they are destroyed using the Highcharts Chart.destroy method.

Everything

nhmc.cleanup.clearMap

Function

nhmc.cleanup.clearMap()

This calls all of the above cleanup functions and removes all tooltips using nhmc.tooltips.destroy and
nhmc.tooltips.unbindHover. It’s a nuclear option for getting everything you can off of the map.

8 Chapter 1. Contents

http://dojotoolkit.org/reference-guide/1.6/dojo/connect.html
http://dojotoolkit.org/reference-guide/1.6/dojo/disconnect.html
http://dojotoolkit.org/reference-guide/1.6/dojo/disconnect.html
http://www.highcharts.com/ref/#chart-object

Vote 2012 Map Center Documentation, Release 1.4

1.2.4 nhmc.config

This package contains a variety of options related to the general appearance and operation of the Map Center. When a
Map Center page is loaded, nhmc.mapCenterInit checks for the presence of a global object called nhmc_config; if
that object exists, its values are merged into this package before initialization proceeds, allowing for individual pages
to override these options as necessary.

Rendering options

nhmc.config.defaultDimensions

Object

This contains the dimensions of the original SVG images on which the Map Center views are based. Several scaling
calculations take these dimensions into account.

Caution: These dimensions should not be changed unless the source vector imagery on which the Map Center
views are based also have changed. If you’re attempting to change the size of the map, do so by setting the size of
the #map element in CSS.

nhmc.config.countySteps

Object

The Map Center renders maps containing counties gradually to avoid locking up users’ browsers and giving them the
dreaded “browser unresponsive” error. To do this, we take the set of counties to be drawn and divide it into several
subsets of counties so the browser can catch its breath between subsets. (For more, see nhmc.ctrl.zoomToState.)

This object sets how many subsets should be used. nhmc.config.countySteps.state is used for statewide
county maps, and nhmc.config.countySteps.national is used for the nationwide county map. Their values
have been reached through some trial and error in performance testing, and we don’t recommend changing them.

Color options

nhmc.config.styleColors

Object

This object contains an assortment of named colors for use in various modules. It’s not used much, but it’s there in
case it comes in handy.

nhmc.config.defaultAttributes

Object

This object contains the default fill and stroke colors for state and county paths.

1.2. Package reference 9

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

Vote 2012 Map Center Documentation, Release 1.4

City labels

nhmc.config.cityLabels

Object

This object contains options for the city labels on statewide county maps.

City labels contain three components:

Label The label is a text element containing the city’s name. It has three configuration options in
nhmc.config.cityLabels:

• labelNudge is used to tweak the alignment of the label and the marker (described below). It is represented
as a number of pixels the label should be moved downward.

• labelOpacity sets the label’s opacity and may be set to any value from 0 to 1 inclusive; a labelOpacity
of 1 makes all labels completely opaque.

• labelSize sets the size of the label text in pixels.

Marker The marker is a black circle placed at the city’s location on the map. It has two configuration options in
nhmc.config.cityLabels:

• markerOpacity sets the marker’s opacity and may be set to any value from 0 to 1 inclusive; a
markerOpacity of 1 makes all markers completely opaque.

• markerRadius sets the radius of the marker in pixels.

Background The background is an optional white box that sits behind the label and marker to better distinguish
them from the map behind them. This isn’t currently used anywhere in the Map Center, but it has three configuration
options in nhmc.config.cityLabels:

• backgroundOpacity sets the background’s opacity and may be set to any value from 0 to 1 inclusive; a
backgroundOpacity of 1 makes all city label backgrounds completely opaque.

• backgroundPadding sets the amount of extra space on each side of the label/marker combination that
should be backed by the background element. This property is an array in standard CSS order; that is, the four
values in this array are used for the top, right, bottom and left of the city label, in that order.

City labels typically are drawn such that the label is placed to the right of the marker. When this is impractical
(either because such a placement would leave the label cut off by the right edge of the map surface or because
this label placement would overlap with the label text of another city), though, the label is placed to the left of
the marker instead. Because of this, “right” and left” have special meanings in the backgroundPadding
property: “right” always refers to the end of the background farthest from the marker, and “left” always refers
to the end of the background closest to the marker.

• hideBackgrounds should be set to true if backgrounds should not be drawn or false if they should be
drawn.

Identifiers

lib/map_center/usps_fips.js contains a few useful sets of identifiers that get used frequently.

10 Chapter 1. Contents

Vote 2012 Map Center Documentation, Release 1.4

U.S. Postal Service state abbreviations

Two objects contain mappings to and from USPS state abbreviations:

• nhmc.config.stateToUSPS has full state names as keys and abbreviations as values.

• nhmc.config.USPSToState has abbreviations as keys and names as values.

Some states did not report Republican presidential primary results by county in 2012; these states have additional
abbreviations listed for maps with one area for the entire state. For example, the single-area map of Maine corresponds
to a state name of Maine (statewide) and an abbreviation of ME_EMPTY.

FIPS 6-4 county codes

Two objects contain mappings to and from five-digit FIPS county codes:

• nhmc.config.countyToFIPS has full state names as keys and objects as values. Those objects in turn
have full county (or county-equivalent) names as keys and FIPS county codes as values. For example:

nhmc.config.countyToFIPS["Virginia"]["Arlington County"] === "51013"

To accommodate the single-area statewide maps described above, there are also sub-objects for each state that
has such a map, using the pseudo-FIPS code consisting of the state’s two-digit FIPS code followed by 000 for
the “county” comprising the entire state. For example:

nhmc.config.countyToFIPS["Maine (statewide)"]["Maine"] === "23000"

• nhmc.config.FIPSToCounty has FIPS county codes as keys and arrays as values. Each array contains
two elements: The first is the full state name, and the second is the full county name. For example:

nhmc.config.FIPSToCounty["51013"] === ["Virginia", "Arlington County"]
nhmc.config.FIPSToCounty["23000"] === ["Maine (statewide)", "Maine"]

Miscellaneous

nhmc.config.hashParams

Object

This object controls the format of values used in a page’s fragment identifier to let users link to specific map views
within particular modules or other initial states of module code. (For example, it could be used to share users’ pre-
dictions of Electoral College outcomes.) nhmc.ctrl.hashParams handles the setting and getting of these values, but
nhmc.config.hashParams controls the characters used to format them within the fragment identifier.

1.2.5 nhmc.ctrl

This package contains functions mostly for manipulating, rendering and switching among various map views, though
it also contains other utility functions that can be useful to various modules.

Scaling

nhmc.ctrl.scaleStateMap

Function

1.2. Package reference 11

http://www.epa.gov/enviro/html/codes/state.html
http://en.wikipedia.org/wiki/Fragment_identifier

Vote 2012 Map Center Documentation, Release 1.4

nhmc.ctrl.scaleStateMap(state, factor)

This function scales the map view specified by state by the scale factor specified by factor. Scaling the map view
consists of resizing each state or county path in the map view and then resizing each city label in the map view.

Note: Despite the name state in the argument and the function name, that term in this context is used in a general
sense to refer to the name of any map view, including us_all for the nationwide state map and us_counties for
the nationwide county map.

nhmc.ctrl.scaleSurface

Function

nhmc.ctrl.scaleSurface(factor)

This function sets the height and width of the map surface to the default image size scaled in both dimensions by
factor; for example, a 768x486px image scaled by 0.5 would be 384x243px.

nhmc.ctrl.scaleCurrentMap

Function

nhmc.ctrl.scaleCurrentMap(factor)

This function first scales the map surface and then scales the current map view, both by factor.

Colors

nhmc.ctrl.setStateColors

Function

nhmc.ctrl.setStateColors(states, color)

This function only has an effect on the nationwide state map and sets the fill color of each specified state. It accepts
two arguments:

• states is an array of full state names as found in nhmc.config.stateToUSPS.

• color is a string consisting of either a hexadecimal color code or a color name found in
nhmc.config.styleColors.

nhmc.ctrl.setCountyColors

Function

nhmc.ctrl.setCountyColors(state, counties, color)

This function affects both nationwide and statewide county maps. It accepts three arguments:

• state is a full state name specifying the state containing the named counties.

• counties is an array of full county names within the state as found in nhmc.config.countyToFIPS.

• color is a string consisting of either a hexadecimal color code or a color name found in
nhmc.config.styleColors.

12 Chapter 1. Contents

Vote 2012 Map Center Documentation, Release 1.4

Map rendering

nhmc.ctrl.addCity

Function

nhmc.ctrl.addCity(cityName, cityData, existingCities)

This function adds a city label to a map view (currently limited to statewide county maps). It takes three arguments:

• cityName is a string with the name of the city.

• cityData is an array with two elements:

– The first element is an x-y coordinate pair expressed as a two-element array.

– The second element is a city rank that can be used to distinguish cities by size or importance. This
element is a number, and lower values represent more important/larger cities. (By convention, zero is used
for a state capital.) This value currently is not used to vary a city’s visual representation, but it is used
in nhmc.ctrl.zoomToState to ensure that more important cities are drawn first before proceeding to other
cities.

• existingCities is an array of city labels that have already been drawn on the current map view. This is
used to ensure city labels don’t inadvertently overlap.

nhmc.ctrl.zoomToState

Function

nhmc.ctrl.zoomToState(state)

This function clears the current map view (by calling nhmc.cleanup.clearMap) and renders the one named by the
state argument.

If tooltips are already bound on the page before this function is called, they are reinitialized when the map view has
finished rendering.

See Also:

For more information on the map views themselves and the objects they comprise, see nhmc.geo.

Miscellaneous

nhmc.ctrl.hashParams

Function

nhmc.ctrl.hashParams([newParams[, destroyCurrent]])

Some modules make use of the URL fragment identifier to direct users to a particular starting map view or other
initial state. To streamline this process, the nhmc.ctrl.hashParams function returns an object that contains all
values stored in the fragment identifier. Where possible, items are coerced to Number objects; Boolean values are also
accepted in the form of the values “true” or “false”, and keys without values are treated as true.

Assuming the default values for the properties of nhmc.config.hashParams and the fragment identifier
foo=bar|spam=false|magic|xyzzy=42, calling nhmc.ctrl.hashParams() would return the follow-
ing object:

1.2. Package reference 13

http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Fragment_identifier

Vote 2012 Map Center Documentation, Release 1.4

{
"foo": "bar",
"spam": false,
"baz": true,
"xyzzy": 42

}

This function also may be used to set any or all values in the fragment identifier, and it accepts up to two arguments to
that effect:

• newParams is an object containing keys and values in the same fashion as the object this function returns. This
adds key-value pairs to the fragment identifier, overwriting any keys that already exist (using jQuery.extend).

• destroyCurrent is a Boolean (defaulting to false) that, if true, replaces all key-value pairs in the
fragment identifier with those specified in newParams instead of simply adding/overwriting them as described
above.

Manipulation

These functions are used for programmatically manipulating states and counties, which consists of clicking them or
triggering tooltips related to them.

Lower-level functions

nhmc.ctrl.highlightArea Function

nhmc.ctrl.highlightArea(area, pageX, pageY)

This function highlights the area object, which is a state or county object from nhmc.geo, renders its tooltip if any
exists and positions the tooltip at the coordinates (pageX, pageY) if those coordinates are specified. If those
coordinates are not specified, the tooltip is positioned at the left edge of the map with its top edge one-third of the way
down the map.

nhmc.ctrl.clickArea Function

nhmc.ctrl.clickArea(area)

This function triggers a click event on the area object, which is a state or county object from nhmc.geo.

Warning: Because this uses the actual DOM node for area, this is not supported for browsers that do not support
either SVG or VML rendering, such as Android 2.x.

Higher-level functions

nhmc.ctrl.dehighlightAreas Function

nhmc.ctrl.dehighlightAreas()

This function removes any highlights and tooltips created by nhmc.ctrl.highlightArea.

14 Chapter 1. Contents

http://api.jquery.com/jQuery.extend/
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Vector_Markup_Language

Vote 2012 Map Center Documentation, Release 1.4

nhmc.ctrl.highlightCounty Function

nhmc.ctrl.highlightCounty(stateName, countyName, pageX, pageY)

This function highlights the county with the name countyName in the state with the name stateName and positions
the tooltip (if applicable) at (pageX, pageY) if specified. For more details, see nhmc.ctrl.highlightArea.

nhmc.ctrl.clickCounty Function

nhmc.ctrl.clickCounty(stateName, countyName)

This function triggers a click event on the county with the name countyName in the state with the name
stateName. This only makes sense for maps that show counties, such as the nationwide county map or the statewide
county maps.

Warning: Because this uses the actual DOM node for the county, this is not supported for browsers that do not
support either SVG or VML rendering, such as Android 2.x.

nhmc.ctrl.highlightState Function

nhmc.ctrl.highlightState(stateName, pageX, pageY)

This function highlights the state with the name stateName and positions the tooltip (if applicable) at (pageX,
pageY) if specified. For more details, see nhmc.ctrl.highlightArea.

nhmc.ctrl.clickState Function

nhmc.ctrl.clickState(stateName)

This function triggers a click event on the state with the name stateName. This only makes sense for map views
with state boundaries, which currently only includes the nationwide state map.

Warning: Because this uses the actual DOM node for the state, this is not supported for browsers that do not
support either SVG or VML rendering, such as Android 2.x.

Orphans

nhmc.ctrl.renderLegend

Function

nhmc.ctrl.renderLegend(title, items)

This function was intended to simplify rendering of map legends by accepting two parameters:

• title: A string to be used as the title of the legend.

• items: An array of items to be used as the entries of the legend. Each item should be an array containing two
elements:

– The text of the entry.

– A background color for that entry.

1.2. Package reference 15

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Vector_Markup_Language
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Vector_Markup_Language

Vote 2012 Map Center Documentation, Release 1.4

This function hasn’t actually been used, though, since individual modules often render the legend in different ways.

Todo

Remove this.

1.2.6 nhmc.geo

This package contains the source data and the actual graphics objects for map views, including their constituent state
or county path objects and any applicable city labels.

The contents of this package are primarily used by nhmc.ctrl.zoomToState, which switches between map views.

State and county path objects contain nhmcData attributes with identifying information that might be useful for event
handlers interacting with those paths; more details about those objects’ properties are provided below.

There are three general types of map view currently in use:

• The nationwide county map is a map containing every county and county-equivalent in the 50 United States
and the District of Columbia. “County-equivalent” areas include boroughs in Alaska; parishes in Louisiana;
independent cities in Maryland, Missouri, Nevada and Virginia; the District of Columbia; and census areas in
Alaska.

• The nationwide state map is a map containing all 50 states and the District of Columbia.

• The statewide county maps are maps of each of the 50 states and the District of Columbia. Each state map
(and the DC map) contains all of the county-equivalents in that state and can contain city labels for important
metropolitan areas in that state.

Todo

The entire map view system should be refactored to work in a common way to avoid some of the complications
resulting from having three different kinds of map. Part of a prototype implementation of this exists but still needs to
be incorporated into the current version of the Map Center.

Nationwide county map

The nationwide county map consists of one basic type of object: county paths.

This map is identified by the view name (also referred to in some contexts as the “state” name) us_counties.

Each county and county-equivalent in this map is identified by its five-digit FIPS code as found in
nhmc.config.FIPSToCounty. For example, the raw path string corresponding to Arlington County, Va., which has
a FIPS code of 51013, is located at nhmc.geo.allCounties["51013"].

Important: If you intend to use this map view in a Map Center page, you must include
lib/maps/all_counties.js in the document <head>. In theory, any other JavaScript file with
the appropriate structure could be used, though, which could be useful for making modifications to this
view for the purposes of a specific module. For example, a different version of this map view is
included in the map of 2008 general election results to reflect the fact that Alaska results were re-
ported by state House district instead of by county; that version of all_counties.js is available at
lib/map_center/modules/static_maps_data/08general-all_counties.js.

16 Chapter 1. Contents

http://en.wikipedia.org/wiki/County-equivalent
http://en.wikipedia.org/wiki/Unorganized_Borough,_Alaska
http://www.pbs.org/newshour/vote2012/map/08general.html

Vote 2012 Map Center Documentation, Release 1.4

nhmc.geo.allCounties

Object (values are strings)

This object has county FIPS codes as keys and raw SVG path strings as values. These strings theoretically could be
included as the d attribute of an SVG path element and properly represent the counties’ desired shape. (In fact,
these path strings were taken directly from such attributes; all current Map Center views existed first as standard SVG
images.)

nhmc.geo.countyGeo

Object (values are instances of dojox.gfx.path.Path)

This object has keys of county FIPS codes and values of Dojo path objects corresponding to the actual image compo-
nents representing the counties. It is generated directly from the path strings found in nhmc.geo.allCounties.

Each county path object also includes an nhmcData object to help event handlers identify the county when needed.
nhmc.geo.countyGeo[foo].nhmcData contains one property, county_fips, with a value of the county’s
FIPS code as found in nhmc.config.FIPSToCounty.

Nationwide state map

The nationwide state map consists of two basic types of object: state paths and labels for some smaller states.

This map is initially rendered directly by nhmc.mapCenterInit and is identified by the view name (also referred to in
some contexts as the “state” name) us_all.

The objects making up the nationwide state map live in nhmc.geo.usGeo under the key corresponding to the state’s
full name as found in nhmc.config.stateToUSPS, represented as foo in the headings below. For example, the raw SVG
path string for North Carolina is located at nhmc.geo.usGeo["North Carolina"].state.

Important: If you intend to use this map view in a Map Center page, you should include
lib/maps/states_only.js in the document <head>. In theory, any other JavaScript file with the appro-
priate structure could be used, though, which could be useful for making modifications to this view for the purposes
of a specific module.

nhmc.geo.usGeo[foo].state

String

This property is the raw SVG path string for the state foo; that is, this string theoretically could be included as the d
attribute of an SVG path element and properly represent the state’s desired shape. (In fact, these path strings were
taken directly from such attributes; all current Map Center views existed first as standard SVG images.)

nhmc.geo.usGeo[foo].statePath

Object (instance of dojox.gfx.path.Path)

This property is a Dojo path object corresponding to the actual image component representing the state foo. It is
generated directly from the path string found in nhmc.geo.usGeo[foo].state.

1.2. Package reference 17

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://dojotoolkit.org/api/1.6/dojox/gfx/path/Path
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
http://dojotoolkit.org/api/1.6/dojox/gfx/path/Path

Vote 2012 Map Center Documentation, Release 1.4

This object also includes an nhmcData object to help event handlers identify the state when needed.
nhmc.geo.usGeo[foo].statePath.nhmcData contains one property, state, with a value of the state’s
full name as found in nhmc.config.stateToUSPS.

nhmc.geo.usGeo[foo].label

Object (instance of dojox.gfx.shape.Text)

This property is only used for a handful of East Coast states and is a Dojo text object corresponding to a label for that
state.

Statewide county maps

Statewide county maps are an interesting case because there are so many of them; all maps other than the two men-
tioned above are considered statewide county maps.

Each statewide county map consists of two basic types of object: county paths and city labels.

Each map is identified by a view name (also referred to in some contexts as the “state” name) corresponding to the
all-lowercase version of its state abbreviation as found in nhmc.config.USPSToState.

The objects making up each statewide county map live in nhmc.geo.usGeo under the key correspond-
ing to the state’s full name as found in nhmc.config.stateToUSPS, represented as foo in the headings be-
low. For example, the Dojo group object corresponding to the city label for Jefferson City, Mo., is located at
nhmc.geo.usGeo["Missouri"].cityPaths["Jefferson City"].

In order to keep users from having to download all map views’ path data at once whenever loading a Map
Center page, nhmc.ctrl.zoomToState makes AJAX (technically JSONP) requests to obtain the data for a specific
statewide county map the first time it is needed for a given pageview. The JSONP file for each map view
is located at http://s3.amazonaws.com/newshourroot/nhmc_geo_json/VIEW_NAME.json, where
VIEW_NAME is the view name mentioned earlier in this section.

Cities

nhmc.geo.usGeo[foo].cities Object (values are arrays)

This object has city names as keys and city location arrays as values. The format of those arrays is described more in
detail in the documentation for nhmc.ctrl.addCity.

nhmc.geo.usGeo[foo].cityPaths Object (values are instances of dojox.gfx.shape.Container)

This object has city names as keys and Dojo group objects as values. Each of those groups contains the components
of the labels for the cities defined in nhmc.geo.usGeo[foo].cities, which provides the source data used to generate this
object.

Counties

nhmc.geo.usGeo[foo].counties Object (values are strings)

This object has full county names (as found in nhmc.config.CountyToFIPS[foo] as keys and raw SVG path strings
as values. These strings theoretically could be included as the d attribute of an SVG path element and properly
represent the counties’ desired shape. (In fact, these path strings were taken directly from such attributes; all current
Map Center views existed first as standard SVG images.)

18 Chapter 1. Contents

http://dojotoolkit.org/api/1.6/dojox/gfx/shape/Text
http://dojotoolkit.org/api/1.6/dojox/gfx/shape/Container
http://en.wikipedia.org/wiki/Scalable_Vector_Graphics

Vote 2012 Map Center Documentation, Release 1.4

For example, the path string corresponding to Dane County, Wis., is located at
nhmc.geo.usGeo["Wisconsin"].counties["Dane County"].

nhmc.geo.usGeo[foo].countyPaths Object (values are instances of dojox.gfx.path.Path)

This object has keys of full county names and values of Dojo path objects corresponding to the actual image compo-
nents representing the counties. It is generated directly from the path strings found in nhmc.geo.usGeo[foo].counties.

Each county path object also includes an nhmcData object to help event handlers identify the county when needed.
nhmc.geo.usGeo[foo].counties[bar].nhmcData contains one property, county, with a value of the
county’s full name as found in nhmc.config.CountyToFIPS[foo].

1.2.7 nhmc.tooltips

This package is meant to provide a standard way to handle informational tooltips when users hover over (on desktop
devices) or touch (on mobile devices) a state or county in the Map Center.

When a user performs either of those actions, the following things occur:

• The tooltip element #tooltip is rendered and added to the page by nhmc.tooltips.render.

• The tooltip element is positioned by nhmc.tooltips.position–normally to an area close to where the user touched
or hovered over the state or county, but this can be overridden if desired.

• If the user is on a mobile device, the rest of the map no longer responds to tooltip-related events and waits for the
user to manually close the tooltip. (The module developer’s implementation of nhmc.tooltips.render should call
nhmc.tooltips.addClose when rendering the tooltip element in order to provide the user with this opportunity.)
Once the tooltip is closed, the aforementioned flow is able to start again.

If the user is on a desktop device, the tooltip position will update continously as the cursor moves within the same
state or county, and the tooltip element will be removed when the cursor is no longer over that area.

Initialization

nhmc.tooltips.init

Function

nhmc.tooltips.init()

This function performs any initialization steps required by the tooltip system. This currently includes only calling
nhmc.tooltips.bindHover.

Event handling

nhmc.tooltips.hoverHandlerTokens

Array

This is a standard JavaScript array that contains zero or more handles returned by dojo.connect. Dojo’s event handling
for graphics objects (and other items in general, but we only use it for graphics objects) is powerful in that it doesn’t
require DOM elements to exist as in jQuery–but it introduces a bit more complexity in that binding an event handler
returns a handle that must be passed later to dojo.disconnect in order to unbind that handler.

1.2. Package reference 19

http://dojotoolkit.org/api/1.6/dojox/gfx/path/Path
http://dojotoolkit.org/reference-guide/1.6/dojo/connect.html
http://dojotoolkit.org/reference-guide/1.6/dojo/disconnect.html

Vote 2012 Map Center Documentation, Release 1.4

The handles stored in this array correspond only to the event handlers required by the tooltip system. This array
should be treated as an implementation detail of nhmc.tooltips.bindHover and nhmc.tooltips.unbindHover and proba-
bly should not be accessed by any other parts of the Map Center.

nhmc.tooltips.bindHover

Function

nhmc.tooltips.bindHover()

This function binds all event handlers needed for the interactions listed above to occur. This includes all checking
for mobile devices in order to bind these event handlers correctly; of course, any module-specific handling of such
devices (such as different positioning, different content or providing a close button) will have to perform those checks
elsewhere as well.

nhmc.tooltips.unbindHover

Function

nhmc.tooltips.unbindHover()

This function shuts down the tooltip system by unbinding all event handlers bound by nhmc.tooltips.bindHover.

Positioning

nhmc.tooltips.position

Function

nhmc.tooltips.position(e)

This function is an event handler that sets the position of the tooltip element. By default, this function places the
tooltip close to the user’s mouse cursor (or touch location), but offset in the y-direction by nhmc.tooltips.xOffset and
in the x-direction by nhmc.tooltips.yOffset. (Yes, this makes no sense. It’s the same convention used by CSS Globe‘s
tutorial, and it doesn’t make sense there either.) If the tooltip would extend below the bottom of the document or to
the right of the document’s right edge, it is moved to the opposite side of the user’s cursor (or touch location) in order
to prevent this.

In certain cases, a module developer might want to override this position; for example, we do this for broadcast versions
of just about all of our maps so the tooltip is always on the left side of the document. To do this, simply assign a new
function to nhmc.tooltips.position. For example, since we set the position of #tooltip in this case using
broadcast-specific stylesheets, we simply assign a function with an empty body:

nhmc.tooltips.position = function(e) {};

nhmc.tooltips.xOffset

Number

This property determines how many pixels away from the mouse cursor (or touch location) the tooltip should be
positioned in the y-direction.

20 Chapter 1. Contents

http://cssglobe.com/post/1695/easiest-tooltip-and-image-preview-using-jquery

Vote 2012 Map Center Documentation, Release 1.4

nhmc.tooltips.yOffset

Number

This property determines how many pixels away from the mouse cursor (or touch location) the tooltip should be
positioned in the x-direction.

Rendering

nhmc.tooltips.render

Function

nhmc.tooltips.render()

This function creates the tooltip element #tooltip, appends it to the <body> and renders its content.

Important: This function is meant to be overridden by module developers. The value of this is the Dojo path object
being hovered over (or touched). If you need to access information about that area, access the name or FIPS code with
this.nhmcData; more information about the properties of that object are available in the nhmc.geo documentation.

Closing

nhmc.tooltips.addClose

Function

nhmc.tooltips.addClose()

This function is meant to be called from within nhmc.tooltips.render for touch devices as determined by Modern-
izr.touch. It provides a close button for users to remove the currently showing tooltip and rebind the tooltip system’s
event handlers.

nhmc.tooltips.destroy

Function

nhmc.tooltips.destroy()

This function removes the tooltip element.

1.3 Signal reference

Signals are implemented as jQuery custom event types triggered (and handled) on the document object. For example,
firing the drawingComplete signal is accomplished with the following:

$(document).trigger(’drawingComplete’);

1.3. Signal reference 21

http://dojotoolkit.org/api/1.6/dojox/gfx/path/Path
http://modernizr.com/docs/#touch
http://modernizr.com/docs/#touch
http://api.jquery.com/bind/

Vote 2012 Map Center Documentation, Release 1.4

1.3.1 coreInitialized

This signal fires from nhmc.mapCenterInit when the Map Center core is fully initialized and the first (default) map
view has finished being drawn.

1.3.2 drawingComplete

This signal fires any time a map view has finished being drawn.

1.3.3 mapDataRetrieved

This signal fires whenever the non-primary election results module has finished retrieving data from the server. No
handlers for it currently exist, and no other modules currently fire it.

Todo

Evaluate this signal’s usefulness and decide whether to keep it (and implement it elsewhere) or remove it.

1.4 Module reference

Individual Map Center pages often make use of additional functionality that isn’t included in the core nhmc package;
without such additional functionality, all that would appear is a blank map! The Map Center implements these extras
in the form of “modules”, which are simply JavaScript functions that are executed when the coreInitialized signal fires.

The general organization of a module consists of:

• Declaring which core packages are in use by calling the namespace function.

• Defining an handler for the coreInitialized signal. This signal should only fire once, but existing modules
tend to bind to it using $(document).one() for additional safety.

The body of that handler generally includes:

– Any module-specific data to display or global-ish (within the scope of the handler) objects for intermediate
storage of the module’s state.

– Configuration options.

– Utility functions to handle different calculation or rendering tasks that will be needed.

– Binding of UI event handlers.

– Initialization of the module.

A simple stub module might look something like this:

namespace("nhmc");
namespace("nhmc.charts");
namespace("nhmc.cleanup");
namespace("nhmc.config");
namespace("nhmc.ctrl");
namespace("nhmc.geo");
namespace("nhmc.tooltips");
$(document).one(’coreInitialized’, function() {

// Module body goes here.
});

22 Chapter 1. Contents

http://blogger.ziesemer.com/2008/05/javascript-namespace-function.html

Vote 2012 Map Center Documentation, Release 1.4

Modules:

1.4.1 Electoral College results and calculator

The Electoral College calculator was the Map Center’s first module, and it contains the Electoral College results of all
presidential elections since 1964. Users can view the results of all of those elections and make predictions of the 2012
election.

This module lives in lib/map_center/modules/electoral_college.js.

Operation

This module has two different but related functionalities: a list of previous electoral results from elections since 1968
and a calculator allowing users to predict the electoral results of the 2012 election.

Historical results

The tab available to the user contains a dropdown list of all election years for which we have election results; selecting
any of those options colors each state according to its electoral votes that year and shows the total number of electoral
votes won by each candidate according to the number of electoral votes cast by each state in that year (including split
votes and faithless electors where applicable).

Note: Because of the fact that the same module runs both this functionality and that of the calculator described in
the next section, the module determines which functionality to use based on the presence of tabs. If any tab exists and
contains a dropdown list (such as the one used for past years’ results), it shows historical results; otherwise, it acts as
a calculator instead.

Calculator

This allows users to predict electoral results for the 2012 election. Each state has a click handler bound to it that lets
users change the party winning that state’s electoral votes. How this works depends on the state:

• Maine and Nebraska use the Congressional District Method to allocate their electoral votes. In practice, then,
this means at least three electoral votes in each of those states will go to one candidate, but any remaining
electoral votes in that state could be assigned to any other candidate.

To let users predict scenarios in which either or both of these states can split votes, clicking one of these states
brings up a dialog box that lets users assign these votes.

• All other states and the District of Columbia award all of their electoral votes to the winner of the statewide
popular vote, so clicking one of those areas toggles the winner in the following order: Republican, Democratic,
tossup, no votes.

Changing any state’s vote updates the vote totals in the sidebar, including marking one candidate or the other as
winning if that candidate has obtained a majority of electoral votes.

Architecture

This module has a lot of moving parts, so they’ve been integrated into a small publish/subscribe system.

The pub/sub system lives in the ecMap object in the module source. That object has the following methods:

1.4. Module reference 23

http://en.wikipedia.org/wiki/Faithless_elector
http://en.wikipedia.org/wiki/Electoral_College_%28United_States%29#Congressional_District_Method
http://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

Vote 2012 Map Center Documentation, Release 1.4

• on binds subscriber functions to published events. It takes the same arguments as jQuery.bind.

The only event type is change, which fires whenever the map’s status is changed. To subscribe to this event:

ecMap.on("change", function(event, status) {
// Handler body goes here. status is a status object, described below.

});

• off unbinds subscriber functions. It takes the same arguments as jQuery.unbind.

• set takes one argument: a new status object (described below) with which to replace the map’s entire internal
status object.

• reset takes no arguments and removes all currently set electoral votes.

• get takes no arguments and returns a copy of the map’s current status object.

• modifyVotes takes one argument: an object of changes to state electoral votes in order to modify totals
without having to know the map’s entire current state.

For example, if you just wanted to add five Democratic electoral votes for Nebraska:

ecMap.modifyVotes({
"Nebraska": {

dem: 5,
rep: 0,
toss: 0

}
});

The status objects that are ultimately used all throughout this system have the following properties:

• stateVotes is an object that contains the state-by-state electoral vote breakdown. The keys are full state
names, and the values are objects with the keys dem, rep and toss and integer values with the electoral votes
received by each political party in that state.

• totals is simply an object with the keys dem, rep and toss and integer values with the total electoral votes
received by each political party.

Data structure

The data for this module is stored in two objects toward the top of the module source:

• electoralVotes is an object with election years as keys and objects as values. The object for each year
contains:

– states is an object with the number of electoral votes each state had in that election. The keys are full
state names, and the values are numbers of votes.

– republican, democratic and tossup are arrays containing the names of states whose full electoral
votes went to each of those respective parties in that election.

Note: Throughout this module, tossup is used to refer both to predictions that keep states in play
for either party and to third-party candidates receiving Electoral College votes such as George Wallace in
1968.

– States that did not award their full electoral votes to any party in that election are not listed in the
republican, democratic and tossup arrays; instead, they have their own objects in the elec-
tion data (using their full state names as keys) containing their electoral vote breakdowns by party. For
example, since Nebraska split its vote in 2008:

24 Chapter 1. Contents

http://api.jquery.com/bind/
http://api.jquery.com/unbind/
http://en.wikipedia.org/wiki/United_States_presidential_election,_1968#George_Wallace_and_The_American_Independent_Party
http://en.wikipedia.org/wiki/United_States_presidential_election,_1968#George_Wallace_and_The_American_Independent_Party
http://en.wikipedia.org/wiki/Nebraska%27s_2nd_congressional_district#Electoral_vote.3B_2008_presidential_race

Vote 2012 Map Center Documentation, Release 1.4

electoralVotes["2008"]["Nebraska"] = {
"republican": 4,
"democratic": 1,
"tossup": 0

}

Instances of faithless electors are also represented this way. For example, since an elector from the District
of Columbia left her 2000 ballot blank in protest:

electoralVotes["2000"]["District of Columbia"] = {
"republican": 0,
"democratic": 2,
"tossup": 0

}

• candidateNames is an object with election years as keys and objects as values. The object for each year
contains the names of the parties’ candidates participating in that election, using the same democratic,
republican and tossup (where applicable) key names as before and string values with each candidate’s
last name. For example, for the 2012 election:

candidateNames["2012"] = {
"democratic": "Obama",
"republican": "Romney"

}

1.4.2 Incumbent governors’ election results

This module allows users to view the results of the elections that put each state’s incumbent governor in office.

This module lives in lib/map_center/modules/governors.js.

Note: This currently only includes data from Wisconsin due to deadline pressures involved with that state’s recall
election. The other states will be added later.

Todo

Add support for viewing a nationwide state map with incumbent governors’ party affiliations and support for clicking
a state to view that state’s election results.

Operation

The one tab available in this module allows users to select a state in order to view the county-level results of the most
recent election that elected that state’s incumbent governor (i.e., not including recall efforts that governor survived).

The sidebar in this module shows the statewide vote breakdown in the race, and the tooltips for each county shows the
countywide vote breakdown in the race.

Configuration options

All configuration options live in the config object toward the top of the module source and may be overridden by
defining a global object named nhmcGovernorsConfig, which will be merged into config using jQuery.extend.

1.4. Module reference 25

http://en.wikipedia.org/wiki/Faithless_elector
http://www.nytimes.com/2000/12/19/us/43rd-president-electoral-college-electors-vote-surprises-are-few.html
http://en.wikipedia.org/wiki/Wisconsin_gubernatorial_recall_election,_2012
http://en.wikipedia.org/wiki/Wisconsin_gubernatorial_recall_election,_2012
http://api.jquery.com/jQuery.extend/

Vote 2012 Map Center Documentation, Release 1.4

• bigCandidates is an integer defining the number of candidates in the sidebar that will have large legend
entries including their photo and large vote percents as opposed to smaller, more compact legend entries.

• partyColors is an object with party abbreviation letters (D, R or O) as keys and hexadecimal color codes as
values.

• candidateImages is an object with candidate names as keys and headshot image URLs as values.

• flyoutsEnabled is a Boolean value stating whether tooltips should be rendered as flyouts, which is only
done for broadcast.

• strokeHighlight is a hexadecimal color code used when config.flyoutsEnabled is true; when that option is
enabled, this color is used to outline the county targeted by the tooltip.

• tooltipsEnabled is a Boolean value stating whether tooltips with countywide vote totals should be enabled
at all.

Data structure

The data driving this module is located in an object called resultsData toward the top of the module source. It
has capitalized state abbreviations as found in nhmc.config.USPSToState as keys and objects as values. In each state’s
object:

• areas is an object with county FIPS codes as keys and arrays as values. Each array contains one two-element
array per candidate: The first element is the candidate ID listed in candidates, and the second element is
the number of votes that candidate received. The county’s array is sorted by the number of votes received in
descending order; that is, the candidate with the most votes in that county is listed first.

• breakdown is an array identical in format to the county arrays in areas but with results for the entire state.

• candidates is an object with candidate IDs as keys and candidate names as values. This allows the data in
areas, breakdown and parties to use the more compact candidate IDs instead of candidate names to save
space.

Note: All configuration options use candidates’ names, not their IDs. IDs should not be used with any other
modules; they are arbitrarily assigned to candidates.

• electionYear is a string with the year the election described took place.

• parties is an object with candidate IDs as keys and party abbreviation letters (corresponding to the keys in
config.partyColors) as values.

Fragment identifier

This module makes use of one key-value pair in the fragment identifier via nhmc.ctrl.hashParams:

• map_view, if provided, should be set to the view name of the state to display first. The fragment identifier will
update as the map view is changed.

1.4.3 Republican presidential primary results

This module allows users to view the results of 2012 Republican presidential primaries and caucuses by state.

This module lives in lib/map_center/modules/live.js.

Todo

26 Chapter 1. Contents

http://en.wikipedia.org/wiki/Fragment_identifier

Vote 2012 Map Center Documentation, Release 1.4

Add support for viewing a nationwide state map of state winners such as the one currently provided by the static maps
module that would also allow users to click a state to see the results of that state’s primary or caucuses.

Operation

The one tab available in this module allows users to select a state in order to view the county-level results of that
state’s 2012 Republican presidential primary or caucus. (Some states did not report county-level caucus results and
only reported statewide results; for those states, statewide maps as described in nhmc.config are used instead.)

The sidebar in this module shows the statewide vote breakdown in the race, and the tooltips for each county shows the
countywide vote breakdown in the race.

If config.autoRefresh is true, the map will request and display updated results every config.autoRefreshDelay mil-
liseconds. This does not require a full page refresh.

Results in this module are provided by the Associated Press’ AP Election Services.

Configuration options

All configuration options live in the config object toward the top of the module source and may be overridden by
defining a global object named nhmc_live_config, which will be merged into config using jQuery.extend.

• autoRefresh is a Boolean value stating whether the map should periodically request and display updated
results. This is useful on election night to keep users from having to manually refresh the page to view updated
results.

• autoRefreshDelay is a number stating the number of milliseconds to wait between requests for updated
results. This is ignored if config.autoRefresh is false.

• bigCandidates is an integer defining the number of candidates in the sidebar that will have large legend
entries including their photo and large vote percents as opposed to smaller, more compact legend entries.

• blankMap is a Boolean value stating whether to force the map to have all counties uncolored. This was used
in one broadcast segment.

• candidateColors is an object with candidate names as keys and hexadecimal color codes as values for
colors to represent them on the map.

• candidateImages is an object with candidate names as keys and headshot image URLs as values.

• condenseCandidates is a Boolean value stating whether to restrict the list of candidates to those named in
showCandidates and group all others under an “Other” entry.

• flyouts is a value stating whether tooltips should be rendered as flyouts, which is only done for broadcast.
Originally it was intended to be a string value setting a position for the flyout (or null if flyouts should not be
used), but this value currently is only checked for truthiness. Positioning is entirely handled in CSS.

• flyoutWidth is a number stating the number of pixels wide to render tooltips if they are rendered as flyouts.
(This was here in order to support certain animations.) Positioning and formatting are entirely handled in CSS
now, so this option should be considered deprecated.

• showCandidates is an array of candidate names to show when config.condenseCandidates is true.

• strokeHighlight is a hexadecimal color code used when flyouts are enabled; when this is the case, this
color is used to outline the county targeted by the tooltip.

• tooltipsEnabled is a Boolean value stating whether tooltips with countywide vote totals should be enabled
at all.

1.4. Module reference 27

http://www.ap.org/products-services/new-media
http://api.jquery.com/jQuery.extend/
http://11heavens.com/falsy-and-truthy-in-javascript

Vote 2012 Map Center Documentation, Release 1.4

Data structure

The results data for each state lives in a static JSONP file at http://www.pbs.org/newshour/vote2012/map/live_data/VIEW_NAME.json,
where VIEW_NAME is the state’s abbreviation as found in nhmc.config.stateToUSPS, lowercased. The file’s callback
name is the same abbreviation, but the name there is uppercased; this was done to avoid conflicts with the lowercase
abbreviation in for the state of Indiana, which happens to be a reserved word in JavaScript.

Each state’s results object contains the following properties:

• areas is an object with area IDs as keys and objects with area results as values.

Note: For the purposes of this module, an “area ID” is generally a county FIPS code; for non-county areas
(such as states), the full name of the area is used instead.

Each area’s results object contains the following properties:

– data is an array that contains one two-element array per candidate: The first element is the candidate ID
listed in candidates, and the second element is the number of votes that candidate received. The area’s
array is sorted by the number of votes received in descending order; that is, the candidate with the most
votes in that area is listed first.

– precincts is an array containing two elements:

* The first is the number of precincts reporting in the area.

* The second is the total number of precincts in the area.

These may be used to calculate the percent of precincts reporting.

Warning: Rounding errors become significant once more than 99 percent of precincts are reporting;
module developers should ensure they do not erroneously report 100 percent of precincts reporting
before that is actually the case. (This is primarily an issue when rounding to the nearest integer.)

• breakdown is an array identical in format to the county data objects in areas but with results for the entire
state.

• candidates is an object with candidate IDs as keys and candidate names as values. This allows the data in
areas, breakdown, colors, images and winners to use the more compact candidate IDs instead of
candidate names to save space.

Note: All configuration options use candidates’ names, not their IDs. IDs should not be used with any other
modules; AP Election Services arbitrarily assigns them to candidates and may use different IDs from state to
state for the same candidate.

• colors is an object with candidate IDs as keys and hexadecimal color codes as values. This is deprecated due
to the introduction of the config.candidateColors option.

• images is an object with candidate IDs as keys and headshot image URLs as values. This is deprecated due to
the introduction of the config.candidateImages option.

• lastUpdated is an array containing five elements describing the date and time (in the Eastern time zone,
including Daylight Saving Time if in effect) when this results file was last updated.

• precincts is an array containing two elements:

– The first is the number of precincts reporting statewide.

– The second is the total number of precincts statewide.

28 Chapter 1. Contents

http://en.wikipedia.org/wiki/JSONP
https://developer.mozilla.org/en/JavaScript/Reference/Reserved_Words
http://en.wikipedia.org/wiki/Eastern_Time_Zone
http://en.wikipedia.org/wiki/Daylight_saving_time_in_the_United_States

Vote 2012 Map Center Documentation, Release 1.4

These may be used to calculate the percent of precincts reporting.

Warning: Rounding errors become significant once more than 99 percent of precincts are reporting; module
developers should ensure they do not erroneously report 100 percent of precincts reporting before that is
actually the case. (This is primarily an issue when rounding to the nearest integer.)

• test is a Boolean value stating whether AP Election Services marked any of the data used to generate this
results file as being test data not intended for publication.

• winners is an object with area IDs as keys. For each area ID, the value is either the candidate ID for the
winner projected by AP or null if no such projection has yet occurred.

Fragment identifier

This module makes use of one key-value pair in the fragment identifier via nhmc.ctrl.hashParams:

• map_view, if provided, should be set to the view name of the state to display first. The fragment identifier will
update as the map view is changed.

1.4.4 Non-primary election results

This module allows users to view the results of elections other than Republican presidential primaries.

This module lives in lib/map_center/modules/other_votes.js.

Operation

Two tabs are available to the user; one allows the user to select a state for which to view results, and the other allows
the user to select a specific race in that state.

The sidebar in this module shows the statewide vote breakdown in the race, and the tooltips for each county shows the
countywide vote breakdown in the race.

If config.autoRefresh is true, the map will request and display updated results every config.autoRefreshDelay mil-
liseconds. This does not require a full page refresh.

Results in this module are provided by the Associated Press’ AP Election Services.

Configuration options

All configuration options live in the config object toward the top of the module source and may be overridden by
defining a global object named nhmc_live_config, which will be merged into config using jQuery.extend.

• autoRefresh is a Boolean value stating whether the map should periodically request and display updated
results. This is useful on election night to keep users from having to manually refresh the page to view updated
results.

• autoRefreshDelay is a number stating the number of milliseconds to wait between requests for updated
results. This is ignored if config.autoRefresh is false.

• bigCandidates is an integer defining the number of candidates in the sidebar that will have large legend
entries including their photo and large vote percents as opposed to smaller, more compact legend entries.

• blankMap is a Boolean value stating whether to force the map to have all counties uncolored. This was used in
one broadcast segment that used another module, and this functionality still exists in this one since it was based
on that other module.

1.4. Module reference 29

http://en.wikipedia.org/wiki/Fragment_identifier
http://www.ap.org/products-services/new-media
http://api.jquery.com/jQuery.extend/

Vote 2012 Map Center Documentation, Release 1.4

• candidateColors is an object with candidate names as keys and hexadecimal color codes as values for
colors to represent them on the map.

• candidateImages is an object with candidate names as keys and headshot image URLs as values.

• condenseCandidates is a Boolean value stating whether to restrict the list of candidates to those named in
showCandidates and group all others under an “Other” entry.

• defaultRaceNames is an empty object that is completely unused. It has no mention anywhere in the module
source except in the initial definition of the config object.

Todo

Remove this.

• flyoutsEnabled is a Boolean value stating whether tooltips should be rendered as flyouts, which is only
done for broadcast.

• friendlyRaceNames is an object with race names as listed in the state results file as keys and race names as
the module developer would prefer them to be displayed as values. These should be short in order to fit within
the space available in the race selection tab.

• randomColors is an array of hexadecimal color codes from which candidates’ colors will be selected
for counties they’re winning and their sidebar legend entries. A candidate’s color is determined first by
the candidate-specific color listed in config.candidateColors if one exists or by the first unused color in
config.randomColors otherwise.

• showCandidates is an array of candidate names to show when config.condenseCandidates is true.

• showRaces is an array of names of races that are allowed to be displayed. If this is empty (as it is by default),
all available races may be displayed. The names in this array should be the race names as provided in the state
results file, not the alternative race names potentially defined in config.friendlyRaceNames.

• strokeHighlight is a hexadecimal color code used when config.flyoutsEnabled is true; when that option is
enabled, this color is used to outline the county targeted by the tooltip.

• tooltipsEnabled is a Boolean value stating whether tooltips with countywide vote totals should be enabled
at all.

Data structure

The results data for each state lives in a static JSONP file at http://www.pbs.org/newshour/vote2012/map/live_data/VIEW_NAME_general.json,
where VIEW_NAME is the state’s abbreviation as found in nhmc.config.stateToUSPS, lowercased. The file’s callback
name is the same abbreviation, but the name there is uppercased; this was done to avoid conflicts with the lowercase
abbreviation in for the state of Indiana, which happens to be a reserved word in JavaScript.

Each state’s results object contains the following properties:

• candidates is an object with candidate IDs as keys and candidate names as values. This allows the data in
areas, breakdown, colors, images and winners to use the more compact candidate IDs instead of
candidate names to save space.

Note: All configuration options use candidates’ names, not their IDs. IDs should not be used with any other
modules; AP Election Services arbitrarily assigns them to candidates and may use different IDs from state to
state for the same candidate.

• lastUpdated is an array containing five elements describing the date and time (in the Eastern time zone,
including Daylight Saving Time if in effect) when this results file was last updated.

30 Chapter 1. Contents

http://en.wikipedia.org/wiki/JSONP
https://developer.mozilla.org/en/JavaScript/Reference/Reserved_Words
http://en.wikipedia.org/wiki/Eastern_Time_Zone
http://en.wikipedia.org/wiki/Daylight_saving_time_in_the_United_States

Vote 2012 Map Center Documentation, Release 1.4

• raceNames is an object with race IDs as keys and race names as values. This allows the data in racees to
use the more compact race IDs instead of race names to save space.

Note: All configuration options use races’ names, not their IDs. IDs should not be used with any other modules;
AP Election Services arbitrarily assigns them to races and may use different IDs from state to state for races for
the same (i.e., federal) position.

• races is an object with race IDs as keys and race results objects as values. Each race results object has the
following properties:

– areas is an object with area IDs as keys and objects with area results as values.

Note: For the purposes of this module, an “area ID” is generally a county FIPS code; for non-county
areas (such as states), the full name of the area is used instead.

Each area’s results object contains the following properties:

* data is an array that contains one two-element array per candidate: The first element is the candidate
ID listed in candidates, and the second element is the number of votes that candidate received.
The area’s array is sorted by the number of votes received in descending order; that is, the candidate
with the most votes in that area is listed first.

* precincts is an array containing two elements:

· The first is the number of precincts reporting in the area.

· The second is the total number of precincts in the area.

These may be used to calculate the percent of precincts reporting.

Warning: Rounding errors become significant once more than 99 percent of precincts are re-
porting; module developers should ensure they do not erroneously report 100 percent of precincts
reporting before that is actually the case. (This is primarily an issue when rounding to the nearest
integer.)

– breakdown is an array identical in format to the county data objects in areas but with results for the
entire state.

– precincts is an array containing two elements:

* The first is the number of precincts reporting statewide.

* The second is the total number of precincts statewide.

These may be used to calculate the percent of precincts reporting.

Warning: Rounding errors become significant once more than 99 percent of precincts are reporting;
module developers should ensure they do not erroneously report 100 percent of precincts reporting
before that is actually the case. (This is primarily an issue when rounding to the nearest integer.)

– winners is an object with area IDs as keys. For each area ID, the value is either the candidate ID for the
winner projected by AP or null if no such projection has yet occurred.

• test is a Boolean value stating whether AP Election Services marked any of the data used to generate this
results file as being test data not intended for publication.

Todo

1.4. Module reference 31

Vote 2012 Map Center Documentation, Release 1.4

Add some support for specifying the location of race-specific results files to allow for viewing archived results from
past races in states that have held other races since then.

Fragment identifier

This module makes use of one key-value pair in the fragment identifier via nhmc.ctrl.hashParams:

• map_view, if provided, should be set to the view name of the state to display first. The fragment identifier will
update as the map view is changed.

1.4.5 General-purpose static data mapping

This module drives all data-driven choropleth maps not covered under any of the other Map Center modules. It is
designed to display category-based and continuous value-based data for any of the available map types, and it includes
a variety of useful hooks and overrides in order to be more useful for creating variations on these types of maps
relatively quickly.

This module lives in lib/map_center/modules/static_maps.js, and the current data sets used with it live
in lib/map_center/modules/static_maps_data/ by convention.

Operation

A page making use of this module must include one additional JavaScript file containing the data to display. As
described above, this file should live in lib/map_center/modules/static_maps_data/. That file should
define one global variable, nhmcStatic, with a format described below.

Depending on whether the page is intended to show one or multiple data sets, the user may have one or two tabs
available; the one that is always available allows the user to select a specific map view, and the one that is available in
the case of multiple data sets allows the user to select a specific data set to view.

In either case, the states or counties on the map are colored according to the data provided. The sidebar in this module
shows the meaning of each color used on the map, and the tooltips for each state or county shows the specific data
value that caused that state or county to receive the color it has.

Configuration options

There are three major configuration options that exist outside the data file itself , all changeable via global variables:

• nhmcStaticBreakFormatter is a function used for rendering the sidebar entries for each color shown on
the map when the data set shown uses continuous values. It accepts six arguments:

– thisBreak is the break value for this particular sidebar entry.

– prevBreak is either null or the break value for the sidebar entry before this one.

– isLastBreak lets the formatter function know this is the last break value to be included in the sidebar.

– breakPrefix is a string meant to be displayed before a break value. This often is used for currency
signs.

– breakSuffix is a string meant to be displayed after a break value. This often is used for units (points,
percent, etc.).

– breakDecimals is an integer requesting that a break value be rounded to a specific number of decimal
places; for example, small dollar amounts might have breakDecimals set to 2 to properly show a
number of cents.

32 Chapter 1. Contents

http://en.wikipedia.org/wiki/Fragment_identifier

Vote 2012 Map Center Documentation, Release 1.4

By default, this function renders the sidebar as a list of ranges from one break to the next. This function will
execute every time the map view is changed.

• nhmcStaticFlyouts is an object that determines whether tooltips should be rendered as flyouts. No specific
properties need to be defined in this object for flyouts to be enabled; the object just needs to exist. By convention,
though, to enable flyouts, the following value is used:

var nhmcStaticFlyouts = {
enabled: true

};

Other properties that get merged with those provided in this object are:

– corner was intended to be a string value setting a position for the flyout (or null if flyouts should not
be used), but now positioning is entirely handled in CSS, so this option should be considered deprecated.

– strokeHighlight is a hexadecimal color code for the color used to outline the state or county targeted
by the tooltip.

– width is a number stating the number of pixels wide to render the flyout. (This was here in order to
support certain animations.) Positioning and formatting are entirely handled in CSS now, so this option
should be considered deprecated.

• nhmcStaticTooltipFormatter is a function used for rendering the content of the tooltips corresponding
to each state or county on the map. It accepts five arguments:

– thisFIPS is a county FIPS code if the tooltip should show data for a county or an empty string if it
should show data for a state.

– thisState is a full state name for the area for which the tooltip should show data. This is in-
cluded whether the area is a county or a state (since counties do exist within states); therefore,
nhmcStaticTooltipFormatter should check the values of the thisFIPS and thisCounty ar-
guments to determine the type of area being touched or hovered over.

– thisCounty is a full county name if the tooltip should show data for a county or an empty string if it
should show data for a state.

– countyOnly is a Boolean value that, if true, requests that the tooltip show just the name of the county be-
ing touched or hovered over as opposed to the name of the county and the name of that county’s state (e.g.,
Arlington County or Arlington County, Virginia if countyOnly is true or false
respectively).

– currentData is the full data set being displayed (as described in Data structure below).

This function will execute every time a tooltip is created, but not while that tooltip simply updates its position
within the same state or county.

One additional configuration option exists:

• nhmcStaticDataIndex is an integer with the same interpretation as the data_index parameter in the frag-
ment identifier. It will be ignored if the data_index fragment parameter is set.

Data structure

Two types of data sets can be displayed in a map using this module:

• Category-based data sets place states and counties in any of a number of categories and color areas that are in
the same category with the same color.

• Continuous value-based data set assign a value to each state and/or county and color those areas based on which
of a number of ranges of values happen to include the areas’ values.

1.4. Module reference 33

Vote 2012 Map Center Documentation, Release 1.4

As described in Operation above, any page using this module must include a JavaScript file (or <script> block)
that defines a variable named nhmcStatic. For a page that uses only one data set, nhmcStatic should be an
object with the properties listed in either Categories or Continuous values below; for a page that uses multiple data
sets, nhmcStatic should be an array of such objects.

Note: In both of the description sections below, the term “area name” refers to FIPS codes for counties and full state
names for states.

Categories

A data set object for category-based data must contain the following three properties:

• categories is an array of strings containing the names of the categories to use in the data set, listed in the
order they should be displayed in the sidebar.

• colors is an object with category names (as listed in categories) as keys and hexadecimal color codes as
values. These colors will be used to fill areas that fall in each category and will be shown next to each category’s
name in the sidebar.

• areaLists is an object with category names (as listed in categories) as keys and arrays of area names
as values. Each array should contain the names of all states and the FIPS codes of all counties that fall in that
category. Any states or counties that are unlisted in all area lists will remain their default fill color as defined in
nhmc.config.defaultAttributes.

See Also:

For an example of a category-based data set, check out the Patchwork Nation categories map.
The page source is located at patchwork_types.html, and the data set source is located at
lib/map_center/modules/static_maps_data/patchwork_types.js.

Continuous values

A data set object for continuous value-based data must contain the following three properties:

• breaks is an array of numbers that represent the greatest value in each group of areas that should be colored
identically. The last value in breaks should be at least as great as the greatest value in the data set and may be
greater. (The maximum possible value is a good default, such as 100 for percentages.)

For example, if you are mapping a data set with values ranging from 0 to 100 and want to split it up into five
equally spaced groups of 20 each:

"breaks": [20, 40, 60, 80, 100]

This will define groups of:

– 0 to 20 (rendered by default in the sidebar as 20)

– 20 to 40

– 40 to 60

– 60 to 80

– 80 to 100 (rendered by default in the sidebar as >80)

• colors is an array of hexadecimal color codes in the same order as in breaks. Continuing the previous
example:

34 Chapter 1. Contents

Vote 2012 Map Center Documentation, Release 1.4

"colors": ["#000000", "#ffffff", "#ff0000", "#00ff00", "#0000ff"]

would assign the color #ff0000 to the 40 to 60 group.

• areas is an object with area names as keys and data points (numbers that fall in the ranges defined in breaks)
as values. Continuing the previous example:

"areas": {
"Missouri": 75

}

would fill the state of Missouri with #00ff00 (since it falls in the 60 to 80 range).

It also may contain any combination of the following five properties, including none of them or all of them:

• decimalPlaces is a number of decimal places to which the breaks and data values should be rounded when
they’re displayed. This defaults to zero, which rounds everything to the nearest integer.

• prefix is a string (defaulting to the empty string) that is prepended to the breaks and data values when they’re
displayed. This is primarily used for currency indicators such as the $ before dollar amounts.

• suffix is a string (defaulting to the empty string) that is appended to the breaks and data values when they’re
displayed. This is primarily used for units, including percents.

• seriesName is a string (defaulting to undefined) which, if defined, is used to populate any element with
the class static_map_name.

• sidebarTitle is a string (defaulting to undefined) which, if defined, is used to populate the element with
the ID sidebar_title.

See Also:

For an example of a continuous value-based data set, check out the unemployment rate map.
The page source is located at unemployment.html, and the data set source is located at
lib/map_center/modules/static_maps_data/unemployment.js.

Fragment identifier

This module makes use of two key-value pairs in the fragment identifier via nhmc.ctrl.hashParams:

• data_index, if provided, should be set to the index of the data set to display first. This only makes sense if
nhmcStatic is defined as an array of objects.

• map_view, if provided, should be set to the name of the map view to display first. The fragment identifier will
update as the map view is changed.

1.5 User interface

The Map Center includes a variety of user interface items that aim to keep the user experience relatively consistent
across pages and across modules. Some of these are missing in embedded maps, but other pages should include these
as needed.

We use jQuery UI‘s Overcast theme as a base for items that make use of jQuery UI; right now, that just includes dialog
boxes.

1.5. User interface 35

http://en.wikipedia.org/wiki/Fragment_identifier
http://jqueryui.com/
http://bit.ly/LipBe6

Vote 2012 Map Center Documentation, Release 1.4

1.5.1 Broadcast maps

We keep broadcast-ready versions of all of our maps that omit several of the page features that normally surround Map
Center pages, such as site navigation and featured politics stories. The main markup parts of these maps (everything
inside #view_info and #content_area) should almost always be the same, though. Usually there are some
additional styles applied to change text sizes and/or reposition elements to make them more readable on air.

1.5.2 Dialog boxes

These are standard jQuery UI dialog boxes. When creating these, be sure to add them to nhmc.cleanup.futureGarbage
and nhmc.cleanup.activeDialogs so the appropriate cleanup routines know about them for later.

1.5.3 Map page selection

Toward the top of each Map Center page is a #nav_outermost element that contains all of the containers needed
for the user to select the page they want to view. This is handled outside of the Map Center core by the standalone
JavaScript file lib/map_center/navigation.js, which takes care of all of the event bindings and populates
the navigation’s #nav_container with an option for every page listed in that JS file’s navObjects array. Each
object in navObjects should contain four properties:

• featured is a Boolean value that, if true, will color the navigation option differently as a way to make it
stand out. This should only be true for one item at a time.

• title is a string with the text of the navigation option.

• href is a string with the filename of the page to which the navigation option should link. (This will automati-
cally have -broadcast inserted before the file extension when the navigation detects that the user is viewing
a broadcast map.)

• id is a string that should be short and is added to the navigation option’s ID in order to give each one a unique
identifier for CSS purposes. Each option will have the ID nav_option_ID, where ID is the value of this
property.

This navigation uses the Roto library, which works great but raises errors from time to time; we keep it collapsed by
default, but it doesn’t expect to ever be hidden. Errors raised by this library can be safely ignored.

1.5.4 Sidebars

All pages (so far) have extra information (most commonly map legends) in the #sidebar element. This element
contains three important child elements:

• #sidebar_title is a header with the title to be displayed in the sidebar.

• #legend is the main content container for the sidebar.

• #map_view is a hidden <input> that keeps track of the current map view that is being displayed. This could
be anywhere in theory, but this seemed like a reasonable place to put it.

1.5.5 Tabs

Tabs live in the #view_tabs element and are each <div> elements with the class view_tab. The tab marked
as active on the page also should have the class view_tab_active; this will be moved as necessary by the event
bindings in nhmc.mapCenterInit.

36 Chapter 1. Contents

http://jqueryui.com/demos/dialog/
https://github.com/rdallasgray/roto

Vote 2012 Map Center Documentation, Release 1.4

Each tab at least should contain an <a> element with the class view_tab_option containing the tab’s text. It is
up to the module developer to add module-specific handlers for these options, including parsing their text or href
attributes as needed.

Tabs with the classes view_tab_more and view_tab_options_more, if provided, can include
child dropdown menus, which are implemented as elements (called #view_tab_more_menu and
#view_tab_options_more_menu, respectively) that contain more of these a.view_tab_option elements;
when these are clicked, their text and href attributes replace those of the tab’s top-level .view_tab_option el-
ement (i.e., above the). For an example of both of these tabs, see ethnicity.html; for an example of tabs
without dropdown menus, see calc.html.

1.5.6 Tooltips

These informational boxes appear next to the user’s cursor (if on a desktop device) or touch location (if on a mobile
device) in certain modules to show details about the area touched or hovered over.

See Also:

See the tooltip package documentation for details.

Flyouts

Flyouts are a special case of tooltip intended specifically for broadcast maps. They are positioned on the left side of
the screen and tend to be vertically centered. These allow for the tooltip information to be presented without actually
covering up the part of the map with which the people on air are interacting.

When flyouts are rendered, they should add a stroke to the area being touched or hovered over; when they are destroyed,
they should remove that stroke.

1.6 Embeddable maps

There is some support for embedding certain Map Center modules (currently static maps, past primary results for
which tabulation is complete and the Electoral College calculator) in other Web pages, such as those of PBS member
stations.

Embeds are handled through two main files:

• A basic PHP script serves markup for a particular map to the user depending on its query string arguments.

• A JavaScript file provides support for creating this query string, calculating the height of the embed and gener-
ating the <iframe> element that will hold the embedded map.

1.6.1 Server side

The server side of this is a PHP script (located at embed/embed.php) that just writes slightly different versions of
its content depending on the query string arguments provided. It otherwise contains most of the same elements as the
normal map pages (except for less useful ones such as the navigation and tabs) and is designed to be responsive using
the styles in embed/embed.css.

The script checks that the arguments fall into the set of allowed values to avoid weird exploits, but this means adding
a new module’s functionality to this takes quite a bit of hand-holding. Ask if you need help.

1.6. Embeddable maps 37

http://en.wikipedia.org/wiki/Query_string
http://www.alistapart.com/articles/responsive-web-design/

Vote 2012 Map Center Documentation, Release 1.4

1.6.2 Client side

embed/nhmc_embed.js defines the embedNHMC function, which embed codes call to create the actual
<iframe> element for the map.

It calculates the height of the element (using lots of our trial and error) in the calcHeight function, which should
be tweaked as necessary. (Being able to change this and affect all embeds is probably the main reason Map Center
embeds are structured this way, honestly.)

It also generates an ID unique to the embed’s contents in case the <iframe> element needs to be styled in any way.
This is currently unused, but it could be a useful support tool later on for sites that embed this.

embedNHMC appends the embedded map by default, but it can be made to just return the <iframe> markup, which
can be useful for previews such as in embed/index.html. (See the source of embed/nhmc_embed.js for
details.)

38 Chapter 1. Contents

	Contents
	Principles of operation
	Package reference
	Signal reference
	Module reference
	User interface
	Embeddable maps

